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1. Introduction
A powerful feature of macromolecular structure

analysis by NMR spectroscopy is its potential for
automation.1,2 It has been recognized for some time
that many of the interactive tasks carried out by an
expert in the process of spectral analysis could, in
principle, be carried out more efficiently and rapidly
by computational systems. Manual methods of pro-
tein data analysis often involve using laboratory-
specific, or even user-specific, rules of interpretation

and validation, which are difficult (if not impossible)
to document and reproduce from one laboratory to
another. In a sense, until such rules of data inter-
pretation and validation can be standardized, the
NMR structure analysis process will retain subjective
aspects that limit its reproducibility and compromise
its scientific value. For these reasons, a critical next
step in evolving a level of scientific maturity in the
field of biomolecular NMR is to establish conventions
and standards of data interpretation and validation
and to instantiate these standards as part of a largely
automated process of data analysis. In this review
we summarize recent advances in automating the
processes of determining 3D structures of proteins
from NMR data, with emphasis on those methods of
computational and experimental NMR which have
been incorporated into automated analysis platforms.

2. Multidimensional, Triple Resonance, and
Cryogenic Probe NMR Technologies

Resonance assignments provide the basis for analy-
sis of protein structure and dynamics by NMR
spectroscopy.3,4 The use of multidimensional triple
resonance NMR for determination of protein reso-
nance assignments5-7 has become standard in many
laboratories. Indeed, for small proteins (<15 kDa) the
process of determining resonance assignments from
triple resonance NMR data is, in many cases, a
completely routine task. The introduction of RD
(reduced-dimensionality)8-14 and GFT (G-matrix Fou-
rier transformation)15,16 triple resonance NMR pro-
vides powerful approaches for rapid data collection
and richer spectral features that are more amenable
to automated analysis. For example, these methods
can provide 4D and 5D spectral information in 3D
and even 2D spectral representations. Other com-
bined experimental and computational methods such
as nonlinear sampling with maximum entropy re-
construction,17,18 Hadamard techniques for selective
multichannel excitation and detection,19,20 and spec-
tral reconstruction from suitably tilted planes21,22

provide ways to drastically reduce data collection
times. Residual dipolar couplings (RDCs)23-26 and
trans hydrogen bond scalar coupling measure-
ments27-30 also provide extensive and powerful struc-
tural constraints that complement information de-
rived from more classical NOESY, scalar coupling,
and amide proton exchange experiments.

Motivated by these spectroscopic advances, signifi-
cant progress has been made in automating the
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processes of resonance assignment determination,
NOESY and RDC data analysis, and 3D structure
generation, including for example the algorithms of
AutoAssign,31 ARIA,32-34 CANDID,35 and AutoStruc-
ture.36,37 Although such software greatly accelerates
the process of going from high-quality peak lists to
resonance assignments and 3D structures, the ad-
ditional processes of data collection, referencing,
Fourier transformation, peak picking, and peak list
editing now constitute the major portion of the time
required for protein structure determination. More-
over, failure to accurately and completely execute
these “data processing” tasks results in failures in
the automated assignment and structure analysis
processes.

Recent developments in cryogenic probe technology
for NMR spectroscopy38,39 provide significant im-
provements in signal-to-noise ratios for protein
samples in aqueous buffered solution and allow much
shorter data collection times for most of the triple

resonance experiments designed for protein reso-
nance assignments. High-field (800 and 900 MHz)
NMR data often provide improved dispersion and
well-resolved spectra. Using such modern instrumen-
tation, the data required for analysis of resonance
assignments and 3D structure determination of small
proteins (<150 residues) can be collected in just a few
days. Parallel computer system architectures also
provide an important approach to reducing the time
required for data processing.40 Indeed, using current-
generation, automated methods of data analysis in
favorable cases, resonance assignments and complete
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3D structures of small proteins can now be completed
in several days (see, for example, refs 40-42).

3. Organizational Challenge
Despite the technological advances described above,

the process of NMR-based protein structure analysis
is challenged by requirements for properly executing,
processing, and analyzing many separate NMR ex-
periments. Unlike biomolecular crystallography, which
generally involves a single type of data collection
experiment, a protein NMR structure determination
may require proper collection and analysis of 10-20
individual 2D, 3D, and 4D NMR spectra. These data
must be highly consistent, as the input to the
structure calculations is a composite generated from
across these many data sets. Although it is now
possible to collect these data rapidly using cryogenic
probes and reduced-dimensionality methods, the
large number of data sets required presents logistical
challenges. Accordingly, some of the most challenging
bottlenecks that remain to high-efficiency protein
NMR are organizational rather than scientific.

4. Overview of the Automated Protein Structure
Analysis Process

The principal steps of automated protein NMR
structure analysis are outlined in Figure 1. These
include (i) standardized data collection, (ii) data
processing (including spectral referencing and Fou-
rier transformation), (iii) peak picking and peak list
editing, (iv) resonance assignment, and (v) structure
determination (including analysis of conformation
constraints, NOESY assignment, RDC data analysis,
and 3D structure generation). In building an auto-
mated data analysis platform, the input and output
of each of these steps must be organized in a self-
consistent way, ideally using a relational data-
base.43,44 A key issue for automated analysis is

validation of completeness, quality, and consistency
of data generated in each of these principal steps.
Recent efforts have focused on peak list validation,
resonance assignment validation, and (both interme-
diate and final) structure validation. A critical issue
for automation is data quality. These validation
steps, and estimates in uncertainties in the derived
information, are critical both for defining a robust
and reliable automation process and for interpreting
the resulting resonance assignments and 3D struc-
tures.

5. Standardized Data Collection
The challenges of organization for automated data

analysis begin with data collection. As protein struc-
ture analysis relies on data from many different NMR
experiments, it is critical that these data be self-
consistent and fairly complete. Self-consistency can
be particularly problematic when mixing data col-
lected on different NMR spectrometers and/or using
different samples of the protein under investigation,
and efforts must be made to minimize spectrum-to-
spectrum variability. Ideally, efforts should be made
wherever possible to collect all the data needed for a
protein structure analysis back-to-back on the same
sample and, where possible, using the same NMR
instrument. However, even this strategy does not
ensure consistency across spectra, as sample heating
effects can depend on decoupler duty cycles, which
are different in different NMR experiments. Fortu-
nately, the latest generation NMR probes, and par-
ticularly cryogenic probes, exhibit less sample heat-
ing from decoupling than previous generation probes.

Another critical organization issue for automated
data analysis is the use of a standardized set of NMR
pulse sequences for data collection. Each implemen-
tation of a sophisticated NMR experiment involves
data collection and processing parameters that are
unique to that implementation. It is very difficult to
construct an analysis platform that is completely
flexible with respect to all possible permutations. By
defining standard sets of NMR data collection strate-
gies, a robust platform is created with consistent
types of input data, guiding users with respect to
which NMR experiments are essential, optional (but
useful), or superfluous. In general, different protein
classes (e.g. small 15N,13C-enriched proteins vs larger
perdeuterated 15N,13C-proteins) require different data
collection strategies, but a standardized set of experi-
ments for each of these general classes can be
defined.

It is also valuable to define the adjustable (sample
dependent) and fixed parameters of data collection
and processing for each NMR experiment in each
“standard set.” For example, in generating triple
resonance spectra for automated analysis of reso-
nance assignments, it is helpful to constrain the
digital resolutions in “matching dimensions of comple-
mentary spectra” (e.g. the 13C dimensions of HNCA
and HNcoCA spectra) to be identical, to maximize
accuracy in matching intra-residue and sequential
cross-peaks between these spectra. In the activities
of the Northeast Structural Genomics Consortium
(www.nesg.org), one of the most critical innovations

Figure 1. Flow chart of the overall process of protein
structure analysis from NMR data.
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providing high-efficiency NMR structure generation
has been the establishment of standardized data
collection strategies and carefully considered default
data collection and processing parameters.

6. Local Data Organization and Archiving
Biomolecular NMR research groups require ef-

ficient and simple access to archival NMR data, both
for routine storage purposes and for the development
and testing of novel computational methods for data
analysis. Common methods of archiving raw NMR
data [usually in the form of time domain free-
induction decay (FID) data] in use in most biomo-
lecular NMR laboratories are often inefficient, out-
dated, and error-prone, leading to frequent loss of
valuable data that are both hard and expensive to
obtain. Archives on tape and optical media are
difficult to track and recover, frequently lack ad-
equate organizational and querying facilities, and
have limited longevity. On the other hand, disk space
is now inexpensive enough to consider using mirrored
disk arrays as live disk archives along with regular
tape backups. However, whether using archival
media or live disk archives, laboratories carrying out
multiple protein structure determinations and gen-
erating many different data sets create organiza-
tional problems that need to be addressed by an
appropriate database structure.

The growing demands on data organization and
formatting in submitting NMR data and structures
to public databases such as the BMRB45 and the
PDB46 also require simple methods of harvesting
NMR data and moving this information from the
NMR laboratory into appropriate archival formats.
This is particularly challenging for the several pilot
projects in structural proteomics47-52 which are being
encouraged to submit into the public domain many
more data items than have been traditionally ex-
pected from a conventional structural biology project.
The goal of a standardized archive is not only to
increase laboratory productivity through organization
but also to support future NMR methods develop-
ment by organizing laboratory data into a format
which can easily be retrieved, reproduced, and shared
across the community. If properly organized and
archived, these data will be invaluable to the NMR
community in efforts to develop new data collection
and analysis technologies.

Although critical to the process of automated NMR
data analysis, there have been only limited efforts
to date to develop computer systems for organizing
and integrating NMR data analysis software and
intermediate results of structure analysis. Examples
of recently described NMR laboratory information
management system (LIMS) solutions include the
SESAME44 and SPINS43 databases. The SESAME
database44 provides an easy to use, database-driven,
tool for managing NMR data as well as a large-scale
structural genomics project. SESAME provides a
number of different modules for tracking samples and
experiments through a Java client/server architec-
ture. This implementation makes SESAME acces-
sible from anywhere on the Internet, an attribute
essential in a large scale genomics project where data

may be collected and analyzed from multiple loca-
tions. SPINS (standardized protein NMR storage)43

is an object-oriented relational database and data
model that provides facilities for high-volume NMR
data archival, data organization, and dissemination
of raw NMR FID data to the public domain by
automatic preparation of the header files needed for
simple submission to the BMRB.45 The SPINS soft-
ware is implemented in a Java three-tier system
architecture (Figure 2). This configuration provides
the flexibility necessary to efficiently serve all users
by allowing access from anywhere within a labora-
tory’s local Intranet.

7. NMR Spectral Processing
Several NMR spectral processing issues need to be

carefully considered for successful automated data
analysis. Particularly important are accurate and
precise chemical shift referencing in the direct and
indirect dimensions using IUPAC-defined referencing
methods,53 with dimethylsilapentane-5-sulfonic acid
(DSS) as the reference compound. Accurate 13C, 15N,
and 1H referencing is essential for ensuring the
development of an accurate database of chemical shift
values. Proper chemical shift referencing for aliphatic
13C and 1H resonances is also critical for accurate
amino acid typing31,54,55 and secondary structure
analysis,56 generating information that is used in
most automated assignment and structure programs.

Figure 2. SPINS three-tier system architecture. This
figure shows the relationships between the major compo-
nents implementing SPINS: Oracle 9i database, Tomcat
application server, and Apache Web server. We developed
SPINS under Oracle 9i v9.0.1 enterprise edition database
running on Red Hat Linux 7.1 using Java servlet technol-
ogy in conjunction with Perl 5.005, and TCL/TK v7.6. Java
Database Connectivity (JDBC) drivers and the Perl Data-
base Interface (DBI) drivers provide the direct interface
between the Java servlets on the Tomcat server and the
Oracle database.
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Accurate referencing can be done by externally
calibrating the synthesizer offsets on each NMR
spectrometer with a sample of 1 mM DSS in 2H2O at
neutral pH and at multiple temperatures, and then
using these calibrations to define the corresponding
chemical shift value of the carrier offset in each
dimension of each NMR spectrum.40

As with NMR data collection, similar amounts of
zero-filling and/or linear prediction, and similar
window functions, should be applied to matching
dimensions across spectra to provide comparable final
digital resolutions.55,57 This allows for using the
tightest possible “match tolerances” in later steps of
automated analysis. It is also critical to apply ridge-
suppression and baseline correction in each spectral
dimension to improve their quality, which can be very
important for later restrictive peak picking steps.40

Another critical issue for automated analysis is to
correctly process spectra in a highly reproducible and
timely manner. This can sometimes be a significant
bottleneck, even though processing is often viewed
as a routine task. Even for expert NMR spectrosco-
pists, the referencing and transformation of several
time domain FID data sets into properly phased and
referenced frequency domain spectra suitable for
analysis typically requires several hours to carry out,
and if errors are made in defining processing param-
eters, significant time can be wasted trouble-shooting
processing parameters.

Several high-quality NMR processing programs
suitable for incorporation into automated analysis
pipelines have been developed over the last several
years, including Felix (Molecular Simulations, Inc.,
San Diego, CA), NMRPipe,58 PROSA,59 VNMR (Vari-
an, Inc., Palo Alto, CA), and XWinNMR (Bruker
Analytik GmbH, Karlsruhe, Germany). NMR data
processing requires expert knowledge of many tech-
nical concepts and terms, presenting barriers to
scientists not familiar with the deeper details of NMR
spectroscopy. However, many of the parameters
associated with the referencing and processing of
NMR data, though specific to the pulse sequence
program and particular spectrometer used to record
the data, are relatively sample independent. Given
the constraints of the data collection process as
defined by the NMR pulse sequence, only a few
adjustable parameters need to be considered by a
user, and most of these can be set to usable default
values based on general laboratory experience. Ac-
cordingly, there are several steps in the analysis of
NMR data that may be viewed as routine tasks but
often demand nontrivial amounts of time, knowledge
of NMR theory, and familiarity with technical fea-
tures of the specific data collection methods and/or
processing software.

An example of recent approaches to organizing and
streamlining NMR data processing is the software
package AutoProc.40 AutoProc is a data dictionary
together with a set of software tools designed to allow
a nonexpert in NMR spectroscopy to accurately
reference multidimensional NMR spectra, generate
and run appropriate conversion scripts, and process
NMR data using the software package NMRPipe.58

AutoProc takes as input FID files along with libraries

of spectrometer- and pulse-sequence-specific descrip-
tion (table) files. It converts the data into a processing
format, references the data in the direct and indirect
dimensions using spectrometer-specific calibrations,
and creates processing scripts suitable for running
NMRPipe. It is straightforward to modify AutoProc
to work with other script-based processing software
such as Felix (Molecular Simulations, Inc., San
Diego, CA) or PROSA.59

8. Peak Picking
Peak picking represents one of the crucial steps of

NMR data analysis that has resisted successful
automation for the purpose of automated resonance
assignment and structure determination. This is due
largely to cross-peak overlap and artifacts associated
with large peaks, especially solvent diagonal peaks.
Multidimensional NMR spectra often exhibit artifacts
of baseline distortions, intense solvent lines, ridges,
and/or sinc wiggles. These problems are sometimes
exacerbated by different processing methods that can
dramatically affect line shape, intensity, and resolu-
tion of peaks as well as the severity of spectral
artifacts.

Most automated peak pickers60-65 rely on proper-
ties of an individual peak along with a model of the
noise generated in the spectrum to determine whether
a peak is valid or not, though one approach has
looked at comparative properties of doublets.66 Many
programs utilize line shape comparisons across spec-
tra or perform restricted peak picking (or filtered
peak picking), which is a form of peak editing where
one peak list is filtered against another in comparable
dimensions.31,40,63

The contour approach to peak picking (CAPP)61

relies primarily on peak shape. After CAPP generates
a contour plot, it calculates ellipses that best fit the
contours. CAPP then detects potential ridges before
finally testing the ellipsoid model of each potential
peak against cutoff conditions. Although the results
for 2D spectra are generally quite good, 3D spectra
still require manual editing. Another popular peak
picker, AUTOPSY,62 has methods to deal with over-
lap and deviations from ideal Lorentzian line shape.
It also takes advantage of symmetry peaks present
in some spectra (COSY, NOESY). Multidimensional
NMR spectra interpretation (MUNIN)64 uses a three-
way decomposition to decompose a 3D spectrum into
a sum of components. Each component can represent
one or a group of peaks in the spectrum. ATNOS65 is
software for automated NOESY peak picking. It uses
NOESY symmetry relationships along with restric-
tive peak picking against an assigned resonance list
to guide the automated peak picking while using a
ridge detection method to minimize peak picking
along ridges. ATNOS can be used together with
NOESY assignment and structure determination
software to iteratively identify and assign NOESY
cross-peaks.

In our own laboratory, peak picking is usually done
using the restrictive peak picking and peak editing
facilities in the program Sparky.63 Additional soft-
ware, AutoPeak,40 uses peak lists generated from
manually peak picked 2D 15N-1H HSQC and 13C-
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1H HSQC spectra as frequency-filters across raw
peak lists from 3D spectra. For the peaks which pass
these filters, Sparky reports line width, root-mean-
square fits to Lorenzian line shape, and peak inten-
sity data can be used to further filter artifactual
entries in the initial peak list table. Despite the
sophistication of these automatic peak picking and
editing methods, it is generally necessary to follow
up with further editing (inclusion and exclusion) of
peak lists by manual inspection of the spectra. This
manual editing is guided by a data completeness
quality report generated from initial analysis of data
(i.e., spin system-based peak list quality reports from
the AutoPeak software). For an experienced spec-
troscopist, peak list editing for a typical set of NMR
spectra used for backbone resonance assignments is
completed in about 1 day and can be streamlined by
doing some of the peak list editing while some data
collection is still in progress.55

9. Interspectral Registration and Quality
Assessment of Peak Lists

Quality assessment of input peak lists for further
steps in the automated NMR analysis is crucial for
the success of automation. We use several quality
assessments of peak lists when judging if the peak
lists are good enough for the later steps of automa-
tion. These include (i) peak list registration, (ii) peak
list completeness reports, and (iii) spin system-based
peak list quality reports generated from the Auto-
Peak software suite.55 The first quality assessment
is the ability to register peak lists to each other in
their comparable dimensions. Registration is an often
overlooked step that is absolutely required for good
performance in automated resonance assignment and
NOESY assignment steps. In our current platform,
a comparison of chemical shift values for the same
resonance in different spectra (calculate_registra-
tion40) is used to register peak lists from different
spectra. This approach has the added benefit of
providing standard deviations for matching reso-
nance frequencies between spectra, which is useful
in deriving appropriate tolerances for later steps in
the automated NMR analysis. These standard devia-
tions, along with a count of the peaks that contrib-
uted to their calculation, provide scores that can be
used to assess the quality of the corresponding data.
Interspectral registration data and other peak list
quality assessments provided by the AutoPeak soft-
ware suite are used to determine if a set of peak lists
is of good enough quality for automated NMR analy-
sis, and to identify problematic or incomplete peak
lists.

10. Pattern-Based Spectral Peak Picking
With the development of RD and GFT NMR

experiments, new approaches to peak picking/editing
are being realized that circumvent the problems that
traditional peak pickers encounter. RD, GFT, and
some scalar and dipolar coupling experiments present
spectral data in groups of peaks with characteristic
relationships between components that provide ad-
ditional constraints to verify the veracity of each peak

in a group. A good example is the peak pattern
obtained in RD-TR NMR spectra (Figure 3). With
such data, instead of selecting one peak at a time,
one can select a group of peaks that, together, fulfill
the pattern and, hence, mutually support each other.
The PatternPicker67 program then edits a raw list of
peaks by selecting groups of peaks that fit a defined
pattern. This algorithm is applicable to any experi-
ment containing a characterizable pattern of peaks.
The program is designed to be very flexible with
respect to the peak patterns it can recognize and
includes facilities to easily craft new patterns. Pat-
ternPicker exploits experiments that encode informa-
tion in “patterns of peaks”, even where the “patterns”
are spread over multiple spectra, thus promoting the
use of these experiments that are typically harder
for a human to analyze. This opens up new areas to
explore in experiment design, since the complexity
of the pattern is now a benefit, and not a drawback,
to analysis.

11. Automated Analysis of Backbone Resonance
Assignments

Significant progress has been made recently in
automated analysis of resonance assignments, par-
ticularly using triple resonance NMR data. Several
laboratories are developing programs that automate
either backbone or complete resonance assignments68

(reviewed in refs 1, 68, and 69). A summary of some

Figure 3. RD-TR NMR pattern model. The following
information is used to represent an RD peak pattern (three
peak pattern). The center peak is the central peak of the
pattern. The outer two peaks are the doublet peaks.
Together these peaks have detectable relationships that
can be used in automated peak list editing. For example,
the distances between the doublet peaks and the central
peak along the vertical dimension are identical within a
certain matching tolerance. Several such constraints on
relative peak positions provide a pattern that is used to
distinguish real peaks from noise peaks.67
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of the programs available for automated analysis of
resonance assignments is provided in Table 1.

Most (though not all) automated programs use the
same general analysis scheme which originates from
the classical strategy developed by Wüthrich and co-
workers.3,70,71 Commonly used algorithms for auto-
mated analysis of resonance assignments generally
include some of the following steps:1 (i) register peak
lists in comparable dimensions (registering/aligning);
(ii) group resonances into spin systems (grouping);
(iii) identify amino acid type of spin systems (typing);
(iv) find and link sequential spin systems into seg-
ments (linking); and (v) map spin system segments
onto the primary sequence (mapping).

Different automation programs implement each
step with varying degrees of success; however, overall
robustness is often dictated by the performance of the
weakest step. The different automated resonance
assignment programs are typically categorized by the
methods they use in the mapping step. These meth-
ods (Table 1) include simulated annealing/Monte
Carlo algorithms72-74 such as MONTE73 and PASTA;74

genetic algorithms such as GARANT;75,76 exhaustive
search algorithms77-80 such as TATAPRO,77 MAP-
PER,78 and PACES;80 CAMRA,81 which performs a
heuristic comparison to predicted chemical shifts
derived from homologous proteins; and heuristic best-
first algorithms31,82-84 such as IBIS84 and AutoAs-
sign.31,82 Another distinguishing characteristic be-
tween the methods is the differing types of experi-
mental data used in the analysis. All the programs
mentioned use heteronuclear experimental data. A
few programs such as GARANT,75,76 CAMRA,81 and
the Li and Sanctuary algorithm83 use homonuclear
experimental data as well.

AutoAssign31,55 is a constraint-based expert system
(heuristic best-first mapping algorithm) designed to
determine backbone HN, HR, 13C′, 13CR, 15N, and 13Câ

resonance assignments from peak lists derived from
a set of triple resonance spectra with common HN-
15N resonance correlations. The original implementa-
tion of AutoAssign was written in LISP with a Tcl/
Tk-based graphical user interface (GUI).31 The current
version of AutoAssign is written in C++ with a Java-
based GUI.55 The program can handle data obtained
on uniformly 15N,13C doubly labeled; uniformly or
partially deuterated 2H,15N,13C triply labeled; and
selectively methyl-protonated, uniformly or partially
deuterated 2H,15N,13C triply labeled protein samples.

AutoAssign requires five different types of peak lists
but may use up to nine different types of peak lists
representing data obtained from a variety of triple
resonance experiments and a 15N-HN HSQC spec-
trum. These nine types of peak lists represent
information from the following nine types of experi-
ments: HSQC*, HNCO, HNCACB*, HNcoCACB*,
HNCA*, HNcoCA*, HNcaCO, HNcaHA, and HNco-
caHA. Those peak lists marked by an asterisk are
required by the program; however, using all nine
types of data obtains the best performance.40,55

Key components of specific processing (AutoProc,40

NMRPipe58), peak picking (AutoPeak,40 Sparky63),
and automated assignment (AutoAssign31,55) software
have been integrated together to provide a platform
for rapid analysis of resonance assignments from
triple resonance data. This prototype “integrated
backbone resonance assignment platform”40 was ap-
plied to data collected from the small protein bovine
pancreatic trypsin inhibitor (BPTI) using a first-
generation high-sensitivity, triple resonance NMR
cryoprobe. Seven NMR spectra were recorded in each
of two sessions on a 500 MHz NMR system, requiring
36.6 and 5.5 h of data collection time, respectively.
Fourier transforms were carried out using a cluster
of Linux-based computers, and complete analysis of
the seven spectra collected in each session was
carried out in about 2 h. Several different subsets of
these data collection strategies were compared. This
benchmark study demonstrated that nearly complete
backbone resonance assignments and secondary struc-
tures (based on chemical shift data) for a 58-residue
protein can be determined in less than 30 h, including
data collection, processing, and analysis time. In this
optimum case of this small, well-behaved protein
providing excellent spectra, extensive backbone reso-
nance assignments could also be obtained using less
than 6 h of data collection and processing time. These
results demonstrate the feasibility of high-through-
put triple resonance NMR for determining resonance
assignments and secondary structures of small pro-
teins using an integrated platform for automated
NMR data analysis.

12. Automated Analysis of Side Chain Resonance
Assignments

While several approaches have been found to
provide robust automation of backbone resonance

Table 1. Programs for Automated Protein NMR Resonance Assignments

assignment program mapping method backbonea side chainb

Andrec and Levy79 exhaustive search yes no
AutoAssign31,82 heuristic best-first yes no
Buchler et al.72 simulated annealing/Monte Carlo yes yes
CAMRA81 comparison to predicted shifts yes yes
GARANT75,76 genetic algorithm yes yes
IBIS84 heuristic best-first yes yes
Li and Sanctuary83 heuristic best-first yes yes
MAPPER78 exhaustive search yes no
MONTE73 simulated annealing/Monte Carlo yes no
PACES80 exhaustive search yes yes
PASTA74 simulated annealing/Monte Carlo yes no
TATAPRO77 exhaustive search yes no

a Backbone resonances include HN, NH, C′, Câ, and CR resonances. b Resonances further down the side chain than Câ.
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assignments, a robust approach to automated side
chain assignments is not yet generally available.
Several programs listed in Table 1 support auto-
mated analysis of side chain resonances with differ-
ent degrees of robustness. For example, a combined
approach using GARANT75and AUTOPSY62 together
has demonstrated excellent success in automating
both peak picking and resonance assignments, in-
cluding many side chain aromatic 1H resonance
assignments.85

The principal challenge in automated analysis of
side chain resonances is incompleteness in experi-
mental peak lists generally available for this task.
Most published efforts in automating side chain
resonance assignments76,80,84 focus on HCCcoNH-
TOCSY,86,87,88 and use statistical comparisons to
expected 13C side chain resonance values of amino
acid residues to assign the carbon chemical shifts.
These HN-detected 13C-13C TOCSY spectra are simple
to interpret but are often quite incomplete. Generally,
no single spectrum has all side chain carbon reso-
nances due to differences in TOCSY transfer efficien-
cies for short chain and long chain amino acids,
although more complete data can sometimes be
obtained by co-adding spectra recorded with different
isotropic mixing times.89 While fairly complete HC-
CcoNH-TOCSY data can sometimes be obtained for
proteins of <10 KDa, and analyzed automatically
with published methods, relaxation effects generally
prevent the experiment from working well with
larger proteins unless they are partially deu-
terated.90-92 Other methods72,83 use HCCH-CO-
SY5,93,94 and/or HCCH-TOCSY95,96 data to assign side
chain carbon and hydrogens. However, these ap-
proaches are often challenged by chemical shift
degeneracy and incompleteness of input data. For
these reasons, we suggest that a robust automated
side chain assignment strategy might utilize a com-
bination of HCCcoNH-TOCSY recorded with multiple
mixing times, together with data such as HCCH-
COSY5,93,94 and/or HCCH-TOCSY.95,96

13. Resonance Assignment Validation Software
As with peak picking, quality assessment of

resonance assignments is crucial for robustness in
later steps of the automated NMR analysis. Aside
from efforts by the BioMagResDatabase (http://
www.bmrb.wisc.edu), there have been few efforts to
develop tools for validating resonance assignments
when the 3D structure is unknown. One exception
is the SHIFTY97 program, which predicts chemical
shift assignments from known assignments of ho-
mologous proteins. Other methods, which use chemi-
cal shifts calculated from a 3D structure to validate
chemical shift assignments, include the SHIFTS98

and SHIFTX99 programs. SHIFTX has been used to
create a reference corrected version of the BMRB
called RefDB.100

As part of an integrated platform for protein NMR
structure analysis, we have developed a set of com-
puter utilities called the Assignment Validation
Software (AVS) suite101 for rigorously evaluating and
validating a set of protein resonance assignments
before submission to the BMRB and/or use in sub-

sequent structure and/or functional analysis, without
the need of a 3D structure. They serve the purpose
of providing strict consistency checks for detecting
possible errors and identifying “suspicious” assign-
ments that deserve closer scrutiny prior to NOESY
spectral analysis and 3D structure generation.

The AVS suite includes both new software tools
and extensions of the graphical user interface (GUI)
component of the AutoAssign software package. They
are designed to perform the following tasks: (i)
statistical evaluation of individual chemical shifts
and their associated amino acid spin system clas-
sification against the database of protein chemical
shift data, (ii) evaluation of the quality of information
used to create segments of linked spin systems in the
assignment process, and the uniqueness of their
mapping into the protein amino acid sequence, and
(iii) visual representation of assignment completeness
and consistency with other spectral data not used in
the assignment process but useful as additional
validation of the assignment results. Figure 4 shows
an example of AVS suite output, documenting as-
signment completeness and consistency of NMR
assignments generated for a polypeptide segment of
the BRCT domain from Thermus thermophilus DNA
ligase. This image visually demonstrates the wealth
of sequential connectivity and other NMR data sup-
porting these assignments.101

14. NOESY Interpretation and Structure
Determination

In protein NMR, 3D structures are generated
mainly using the following data: (i) distance con-
straints based on analysis of multidimensional NOE-
SY spectra, (ii) constraints on dihedral angles derived
from experimental and/or statistical data, including
NOESY, chemical shift, and scalar coupling constant
data, (iii) residual dipolar couplings, and (iv) hydro-
gen bond, and/or disulfide bond, distance constraints
derived from other experimental data. Commonly
used structure generation calculation programs in-
clude DYANA,102 XPLOR,103,104 and CNS.105 DYANA
utilizes a dihedral angle representation of protein
structure, suitable for fast structure calculations.
Both XPLOR and CNS can use dihedral angle and
Cartesian space representations. DYANA, XPLOR,
and CNS all use dynamical simulated annealing
methods for structure calculations. In addition, RDC,
pseudopotentials for representing scalar coupling
data, secondary 13CR/13Câ chemical shift restraints,
a conformational database potential, and molecular
dynamics simulation in explicit water are often
incorporated into XPLOR and CNS calculations for
energy minimization and structure refinements.105,106

Several approaches have been described for iden-
tifying backbone and/or side chain dihedral angle
constraints by simultaneous analysis of NOE, scalar
coupling, and/or chemical shift data. The program
HYPER107 generates dihedral angle constraints using
a conformational grid searching method, which cal-
culates the set of φ and ψ dihedral angles and
stereospecific assignments of â methylene protons
that are consistent with a combined analysis of
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vicinal scalar coupling constants and local intra-
residue and sequential NOE data calibrated using
the isolated two-spin pair approximation. Gippert et
al.108 have described two complementary approaches
involving a systematic searching in torsion angle
space for generation of all conformations of polypep-
tides which satisfy the local conformational con-
straints. In the TALOS program,109 protein backbone
φ and ψ constraints are derived by comparing ex-
perimental chemical shifts with a database of high-
resolution crystal structures, for which resonance
assignments are available. These methods provide
robust automated approaches for generating dihedral
angle constraints and starting conformations consis-
tent with these local constraints.

One of the principal goals of automated structure
determination programs involves iterative analysis
of multidimensional NOESY data. Several automated
approaches for NOESY interpretation and struc-
ture calculation have been developed, including
NOAH,110,111 ARIA,32,33 CANDID,35 AutoStructure,36,37

a self-consist constraint analysis method imple-
mented in XPLOR,112 and other generally less devel-
oped programs.113-115

The NOAH, ARIA, and CANDID programs utilize
an iterative top-down data interpretation approach,
having the following steps in common: (i) Ambiguous
proton-proton interactions from unassigned NOESY
cross-peaks, together with unambiguously assigned
proton-proton interactions, are incorporated into
structure calculations and generate a new set of
model structures. (ii) Ambiguous proton-proton in-
teractions are iteratively trimmed using the resulting
model structures if they are far apart in the inter-
mediate model structures. One key difference be-
tween NOAH and ARIA/CANDID is how ambiguous
peaks are converted into distance constraints: NOAH
creates an unambiguous constraint for each ambigu-

ous proton-proton interaction, reassigning con-
straints that are internally inconsistent (self-correct-
ing) in the course of the structure calculation, while
ARIA uses an ambiguous constraint strategy,32,33

involving multiple ambiguous distance constraints for
each ambiguous NOESY peak. The program NOAH
has been combined with the structure generation
programs DYANA and DIAMOD.116 The program
ARIA32,33 has been combined with the structure
generation program CNS. Initial structures are first
built using ambiguous constraint strategies and then
iteratively refined.

Underlying the ambiguous constraint strategies of
ARIA is a key correctness assumption: that, for each
NOE cross-peak, at least one of its potentially linked
proton pairs is a true proton-proton interaction.32,33

Noise peaks in the NOESY peak lists and missing
resonance assignments generally violate this as-
sumption. The program CANDID,35 combined with
DYANA, also uses top-down ambiguous constraint
strategies but, in addition, employs network anchor-
ing and constraint-combination methods, minimizing
deleterious effects when this correctness assumption
is not satisfied. Though providing improved robust-
ness, CANDID’s network anchoring and constraint-
combination methods require some 90% complete
resonance assignments (corresponding to ∼87% com-
plete side chain resonances),117 almost complete
aromatic side chain assignments, low percentage of
noise peaks, and small chemical shift variations.118,119

For both ARIA and CANDID, it is also important to
obtain a well-converged initial fold (rmsd < 3.0 Å).

AutoStructure36,37,120 uses a distinct bottom-up
topology-constrained approach, which distinguishes
it from NOAH, ARIA, and CANDID. AutoStructure
first builds an initial fold based on intra-residue and
sequential NOESY data, together with characteristic
NOE patterns of secondary structures, including

Figure 4. Portion of CMap image generated by the AVS software suite101 showing assignment completeness and consistency
for the BRCT domain from Thermus thermophilus DNA ligase. The first row is the protein sequence. The next row annotates
the secondary structure. The third row is the consensus chemical shift index (CSI) calculated from the HR, CR, Câ, and
C′chemical shifts, on the basis of the method of Wishart et al.56 The next 13 rows summarize triple resonance connectivity
data. The next row summarizes 3J (HN-HR) scalar coupling data. The final 11 rows summarize sequential and medium-
range NOE data derived with the program AutoStructure36,120 validating the assignments and secondary structure. The
software also provides other graphical tools for evaluating inconsistencies of resonance assignments relative to the
experimental data. Reprinted with permission from ref 101. Copyright 2004 Kluwer Academic Publishers.
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helical medium-range NOE interactions and inter-
strand â-sheet NOE interactions, and unique long-
range packing NOE interactions based on chemical
shift matching and symmetry considerations. Unas-
signed NOESY cross-peaks are not used in structure
calculations. Additional NOESY cross-peaks are it-
eratively assigned using intermediate structures.
This protocol, in principle, resembles the methodology
that an expert would utilize in manually solving a
protein structure by NMR. The program AutoStruc-
ture has been combined with the structure generation
programs DYANA and XPLOR/CNS. Figure 5 shows
AutoStructure results for the human basic fibroblast
growth factor (154 amino acid residues), together
with a comparison with the structure obtained by
manual analysis of the same NMR data121 and by
X-ray crystallography. Figure 5 also presents a de

novo structure determination for a homodimeric 33-
residue-per-chain coiled-coil protein.122

By incorporating rules of structural and topological
constraints that are similar to those used by a human
expert in the structure determination process, the
correctness assumption described above is less criti-
cal for most algorithms in AutoStructure. General
input requirements for reliable performance of
AutoStructure include (i) NOESY peak lists contain-
ing at least 90% real cross-peaks and (ii) at least 85%
complete resonance assignments (corresponding to
∼80% complete side chain resonance assignments).1
The requirement for high percentage completeness
of input data is necessary to accurately define protein
core side chain packing in high-resolution structure
determinations, especially for aromatics side chains
and methyl groups. Given a partially complete input
data set, AutoStructure also provides an initial fold
analysis that is used for refinement of input data.
In general, we expect CYANA, ARIA, and AutoStruc-
ture to each exhibit advantages and disadvantages
with different NMR data sets. Ideally, it should be
possible to routinely compare results for all three
methods in a given structural study.

A fully automated robust approach for automated
structure analysis has recently been implemented
within the NIH-XPLOR package.112 The approach
takes in a large list of NOE restraints created in a
simplistic fashion from direct all-to-all matching of
NOE peaks to resonance assignments and uses a
probabilistic method to turn on and off NOE re-
straints as the simulated annealing progresses. The
approach is very fault tolerant and robust but also
very computationally intensive. It should be noted
that this approach, involving dynamic analysis of
constaint consistency in the course of the structure
calculation, is highly complementary to methods
described above that attempt to generate correct
constraint lists prior to initial 3D structure calcula-
tions; the combination of these methods should
provide an even more robust and complete solution
to the challenge of going from NOESY peak lists to
accurate 3D structures.

15. NMR “R-Factors”
One of the most important challenges in modern

protein NMR is to develop a fast and sensitive
structure quality assessment measure which can be
used to evaluate the “goodness-of-fit” of the 3D
structure compared with NOESY peak lists and to
indicate the correctness of the fold. This is especially
critical for automated NOESY interpretation and
structure determination approaches. One approach
uses an R-factor definition similar to that used in
X-ray crystallography, in which the NOESY spectrum
is compared with a simulated NOESY spectrum
back-calculated from 3D structure ensembles. How-
ever, direct adaptation of the X-ray R-factor to NMR
data is challenging for several reasons. In the most
direct analogy, the distance of every atom (or chemi-
cal shift pair) is treated as a lattice point, and the
NOE intensity at each point on this lattice is back-
calculated from the structure under evaluation. Such
a matrix is dominated by the numerous numbers of

Figure 5. Results of automatic analysis of protein struc-
tures from NMR data. (a) Comparison of backbone struc-
tures of human basic fibroblast growth factor (FGF)
determined by manual analysis of NMR data (PDB code
1bld), by automated analysis of the same NMR data using
AutoStructure/XPLOR,120 or by X-ray crystallography (PDB
code 1bas). The superposition of 10 NMR structures of
human basic fibroblast growth factor (FGF) computed by
AutoStructure with XPLOR is also shown. Backbone
conformations are shown only for residues 29-155, since
the N-terminal polypeptide segment is not well defined in
either the automated or manual analysis. For this portion
of the structure, the backbone rmsd’s within the families
of structures determined by AutoStructure are ∼0.7 Å and
the backbone rmsd between the AutoStructure and the
X-ray crystal structure or manually determined NMR
structure is ∼0.8 Å. (b) Solution NMR structure of the
TM1bZip N-terminal segment of human R-tropomyosin
determined by AutoStructure with DYANA.122 The top
panels show superpositions of backbone (left) and all heavy
(right) atoms, respectively. Secondary structures are in red.
The bottom panel shows ribbon diagrams of one represen-
tative structure.
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true negative data, which are not detected in both
the experimental and back-calculated NOESY spec-
tra. Such a quality score will not be sensitive and
meaningful if all these true negative points are
included for quality assessments.

An alternative improved approach is to compare
only the intensity differences for peaks observed from
experimental and back-calculated spectra.123-125 How-
ever, effects of spin diffusion, internal dynamics, and
differential heteronuclear polarization transfer ef-
ficiencies make it difficult to make accurate estimates
of NOESY cross-peak intensities from interproton
distances of 3D structures, even when using complete
relaxation matrix calculations.126,127 The program
R-FAC125 provides a set of NMR R-factor scores,
including a global R-factor and different R-factors for
the intra-residue NOEs, the inter-residue NOEs,
sequential NOEs, medium-range NOEs, and long-
range NOEs. R-FAC uses NOESY cross-peaks to
amide HN protons for comparison in a complete
relaxation matrix formalism. Recent work125 suggests
that one particular R-factor calculated by R-FAC
(monitoring long-range NOEs, and referred to as R5)
is most useful in measuring the quality of an NMR
structure.

Alternative approaches for calculating a statistical
global performance score avoid the true negative
domination problem while preventing the inaccura-
cies in peak intensities from dominating the structure
quality assessment. The field of information retrieval
has encountered a similar true negative domination
problem; recall, precision, and F-measure are statis-
tical quality scores commonly used in information
retrieval applications that are potentially sensitive
to a large number of true negatives.128,129 The
AutoQF120 algorithm uses an analogous F-measure
quality factor from information retrieval. Recall
measures the percentage of peaks in the NOESY
peak lists that are consistent with the resonance
assignments and are also consistent with the average
interproton distances of the query structures. Preci-
sion measures the percentage of close distance proton
pairs in the query structures whose back-calculated
NOE interactions are detected in the NMR data. Both
recall and precision quantify how well the 3D model
structures agree with resonance assignment and
NOESY cross-peak data. Recall and precision are
types of NMR R-factor measurements but place
emphasis on the presence or absence of distance
relationships as opposed to the exact distance values,
which require accurate complete relaxation matrix
calculations. The F-measure score is the overall
performance score calculated from the recall and
precision. The F-measure method provides a global
measure of the goodness-of-fit of the 3D structures
with the NOESY spectra in minutes. AutoQF also
uses an M-score to measure the completeness of the
two- or three-bond connected NOESY cross-peaks, an
indicator of the quality of the NOESY cross-peaks
with strong intensities, assuming the resonance
assignments are all correct.

Recently, a new approach to quantitative evalua-
tion of each experimental NMR restraint (QUEEN
method) has been reported.130 This method is based

on a description of the structure in distance space
and concepts derived from information theory. The
QUEEN method has been shown to be able to
successfully identify the crucial (i.e. important and
unique) restraints in a structure determination for
various examples. This approach to characterizing
“critical constraints” should have great value in
evaluating the accuracy and robustness of a protein
structure derived from NMR data.

16. Structure Quality Assessment Tools
In addition to the “NMR R-factors” described above,

the quality of an NMR structure is defined by a
number of parameters including fold and packing
quality, deviations of bond lengths and bond angles
from standard values, backbone and side chain
dihedral angle distributions, hydrogen bond geom-
etry, and close contacts between atoms. Currently
there does not exist a single comprehensive structure
validation program which takes all these parameters
into account to evaluate the overall quality of the
structure. However, a number of different individual
structure quality software packages exist which
report scores quantifying some key structural pa-
rameters. The most commonly used program for
NMR structures is ProCheck_nmr,131 which reports
statistics on overall stereochemistry. The program
also provides a highly useful graphical representation
of the Ramachandran plot, as well as statistics on
bond lengths, bond angles, and secondary structures.
Another common protein structure validation pro-
gram, the WHAT IF server, provides several tools for
protein structure analysis, validation, and model-
ing.132 PDBStat133 is also useful for computing vari-
ous statistical analyses given the Cartesian coordi-
nates of a protein. The program is capable of handling
many of the complexities associated with data
conversion between different standard formats
(CHARMM,134 CONGEN,135,136 XPLOR,104 CNS,105

PDB,46 and DYANA102/CYANA35). PDBStat evaluates
distance and dihedral angle violations, produces
contact maps based on coordinates or constraints,
calculates atomic superimpositions and rmsd’s, evalu-
ates order parameters for φ and æ dihedral angles,137

summarizes constraints and coordinates, and com-
putes optimal superimposition transformations, hy-
drogen bond analysis, close contact distributions, and
chirality analysis. Verify 3D138 evaluates the environ-
ment of each individual amino acid within the
structure and assigns a probability of that amino acid
existing in the given environment. The PDB Valida-
tion Software139 is capable of reporting close contacts
as well as other structural inaccuracies such as
nonideal bond lengths and bond angles. The MAGE
software140 also analyzes atomic overlaps of protein
structures with protons, identifies distortions of the
polypeptide backbone, and provides tools for analysis
of both backbone and side chain dihedral angle
distributions. MAGE also provides a highly useful
interface for visualization of the bad contacts and
structural distortions in the context of the 3D struc-
ture of the protein.

In our integrated structure analysis platform, we
generate an overall structure quality report which

Analysis of Protein NMR Assignments and Structures Chemical Reviews, 2004, Vol. 104, No. 8 3551



takes into account output from all of the programs
mentioned above, and others, and evaluates their
output based on a Z-score which normalizes the
results of all the software against a set of high-
resolution X-ray crystal structures. The tool has been
developed to handle all data format conversions
required to run the aforementioned software as well
as present the output as a series of easy to read
reports and graphs which can be used to evaluate
structural quality.

17. Minimal Constraint Approaches to Rapid
Automated Fold Determination

Medium-accuracy fold information can often pro-
vide key clues about protein evolution and biochemi-
cal function(s). Extending ideas originally proposed
by Kay and co-workers for determining low-resolution
structures of larger proteins,141 a largely automatic
strategy has been described for rapid determination
of medium-accuracy protein backbone structures
using deuterated, 13C,15N-enriched protein samples
with selective protonation of side chain methyl
groups (13CH3).41 Data collection includes acquiring
NMR spectra for automatically determining assign-
ments of backbone and side chain 15N, HN resonances
and side chain 13CH3 methyl resonances. Conforma-
tional constraints are automatically derived using
these chemical shifts, amide 1H/2H exchange, NOESY
spectra, and residual dipolar coupling data. The total
time required for collecting and analyzing such NMR
data and generating medium resolution but accurate
protein folds can potentially be as short as a few
days.41 Other approaches for rapid fold determination
focus on using residual dipolar coupling data to craft
medium-resolution backbone folds. One method uses
specific analysis tools to reconstruct the protein
structure in fragments.142,143 Another method uses a
bounded tree search algorithm to search through a
structural database using self-consistency between
protein fragments to filter out false positives in the
search.144-146

18. Integrated Platform for Automated NMR
Structure Analysis

Protein NMR spectroscopists depend on a number
of software packages to facilitate the analysis of data.
For this reason, the computational challenge of
solving a protein structure by NMR presents a
formidable technical challenge to scientists. While a
number of software packages have been developed
for the analysis of NMR data, a comprehensive
solution for the complete automated analysis of NMR
data from FIDs to three-dimensional structures is not
yet available. Users choose between a number of
different software programs, each specializing in a
certain step of the structural determination process.
As a result, a dramatic learning curve has emerged
in which a true expert must be proficient with a
number of different pieces of software in order to do
his or her job. Furthermore, invaluable time is often
wasted on trivial tasks such as preparing the output
of one program to be usable for the next. Also, inter-
and, in some cases, even intralaboratory data ex-

change becomes extremely difficult when people are
using a number of different formats required by the
various pieces of software available. To add to this
complexity, with data passing between so many
sources, organization quickly becomes a problem.
Precious data is often lost due to disorganization.
This disorganization can lead to irreproducible re-
sults and can curb the development of future tech-
nologies.

The CCPN effort148 (http://www.bio.cam.ac.uk/nmr/
ccp/) is attempting to address these problems of data
organization and pipelining by developing a detailed
data model to capture the complete NMR structure
determination process. The data model is not only a
standard solution for NMR databases to be imple-
mented under but also an application programming
interface (API) to unify the development of future
NMR software. Many NMR projects are now using
the CCPN specification, including new versions of
ANSIG, SPARKY, and ARIA.

The SPINS43 software provides an alternative
solution to the integration problem. The SPINS data
model is designed to easily accommodate any soft-
ware available to the community. Rather than de-
signing a data model for the world to adopt, the
SPINS data model is intended for internal use by
SPINS as a means to easily integrate any software.
The SPINS data model was designed to be compatible
with the BMRB NMRStar format, thus ensuring
complete compatibility with other public domain
efforts.

The current implementation of SPINS integrates
several pieces of third party pieces of software (Figure
6), presenting them as a single application to the
user. The SPINS software makes use of the following
programs: (i) the SPINS43 database for storage and
organization of raw FIDs, peak lists, chemical shift
lists, constraint lists, 3D structures, and other inter-
mediate results; (ii) AutoProc,40 a spectral referencing
and processing script-generating program; (iii) NMR-
Pipe58 for executing multidimensional Fourier trans-
formations using scripts generated by AutoProc; (iv)
NMRDraw58 spectral visualization software for evalu-
ating spectral quality; (v) SPARKY63 spectral visu-
alization software, launched out of SPINS, for peak
picking and interactive peak list editing; (vi) Auto-
Peak software40,55 for interspectral registration, au-
tomated peak list editing, and peak data validation;
(vii) AutoAssign31,55 automated backbone assignment
software; (viii) Assignment Validation Suite software
(AVS),101 providing statistical and graphical tools for
validating the quality of the assignments; and (ix)
AutoStructure, along with DYANA,102 XPLOR-nih,104

or CNS,105 to iteratively assign NOESY peak lists and
generate 3D structures. While still under develop-
ment, the integrated SPINS NMR structure analysis
and validation platform has already been used for a
few complete small protein structure determina-
tions.42,147

The SPINS software provides an integrated process
and user interface for using the software packages
described above without having to worry about the
numerous I/O complexities associated with data
analysis using multiple software packages. Further-
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more, the process is warehoused by the underlying
SPINS database, making it completely reproducible.
The completed process can be automatically exported
in a standard format (NMRStar 3.1) for submission
to the BMRB.45 Furthermore, SPINS provides a set
of tools to aid in the structural determination process.

19. Conclusions
Recent developments provide automated analysis

of NMR assignments and 3D structures. These ap-
proaches are generally applicable to proteins ranging
from about 50 to 150 amino acids. While progress
over the past few years is encouraging, even for small
proteins, more work is required before automated
structural analysis is routine. In particular, general
methods for automated analysis of side chain reso-
nance assignments are not yet well developed, though
current efforts in this area are quite promising.
Moreover, little work has focused on the specific
problems associated with nucleic acid structures. A
critical area that has evolved significantly over the
past few years involves quality assessment of both
intermediate and final peak lists, resonance assign-
ments, and structural information derived from the
NMR data. However, while various resonance as-
signment and 3D structure “R-factors” are beginning
to be used, no community-wide consensus has been
reached on how to evaluate the accuracy and preci-
sion of a protein NMR structure. Despite these

significant challenges, when good quality data are
available, automated analysis of protein NMR as-
signment and structures can be both fast and reli-
able. Moreover, automation methods are beginning
to have a broad impact on the structural NMR
community.
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NMR 2000, 18, 129.

(79) Andrec, M.; Levy, R. M. J. Biomol. NMR 2002, 23, 263.
(80) Coggins, B. E.; Zhou, P. J. Biomol. NMR 2003, 26, 93.
(81) Gronwald, W.; Willard, L.; Jellard, T.; Boyko, R. F.; Rajarath-

nam, K.; Wishart, D. S.; Sonnichsen, F. D.; Sykes, B. D. J.
Biomol. NMR 1998, 12, 395.

(82) Zimmerman, D.; Kulikowski, C.; Wang, L.; Lyons, B.; Mon-
telione, G. T. J. Biomol. NMR 1994, 4, 241.

(83) Li, K. B.; Sanctuary, B. C. J. Chem. Inf. Comput. Sci. 1997, 37,
467.

(84) Hyberts, S. G.; Wagner, G. J. Biomol. NMR 2003, 26, 335.
(85) Malmodin, D.; Papavoine, C. H.; Billeter, M. J. Biomol. NMR

2003, 27, 69.
(86) Montelione, G. T.; Lyons, B. A.; Emerson, S. D.; Tashiro, M. J.

J. Am. Chem. Soc. 1992, 114, 10974
(87) Logan, T. M.; Olejniczak, E. T.; Xu, R. X.; Fesik, S. W. FEBS

Lett. 1992, 314, 413.
(88) Grzesiek, S.; Anglister, J.; Bax, A. J. Magn. Reson. 1993, 101,

114.
(89) Celda, B.; Montelione, G. T. J. Magn. Reson. 1993, B101, 189.
(90) Farmer, B. T.; Venters, R. A. J. Am. Chem. Soc. 1995, 117, 4187.
(91) Gschwind, R. M.; Gemmecker, G.; Kessler, H. J. Biomol. NMR

1998, 11, 191.
(92) Lin, Y.; Wagner, G. J. Biomol. NMR 1999, 15, 227.
(93) Bax, A.; Clore, G. M.; Driscoll, P. C.; Gronenborn, A. M.; Ikura,

M.; Kay, L. E. J. Magn. Reson. 1990, 87, 620.
(94) Kay, L. E.; Ikura, M.; Bax, A. J. Am. Chem. Soc. 1990, 112, 888.
(95) Bax, A.; Clore, G. M.; Gronenborn, A. M. J. Magn. Reson. 1990,

88, 425.
(96) Fesik, S. W.; Eaton, H. L.; Olejniczak, E. T.; Zuiderweg, E. R.;

McIntosh, L. P.; Dahlquist, F. W. J. Am. Chem. Soc. 1990, 112,
886.

(97) Wishart, D. S.; Watson, M. S.; Boyko, R. F.; Sykes, B. D. J.
Biomol. NMR 1997, 10, 329.

(98) Xu, X. P.; Case, D. A. J. Biomol. NMR 2001, 21, 321.
(99) Neal, S.; Nip, A. M.; Zhang, H.; Wishart, D. S. J. Biomol. NMR

2003, 26, 215.
(100) Zhang, H.; Neal, S.; Wishart, D. S. J. Biomol. NMR 2003, 25,

173.
(101) Moseley, H. N.; Sahota, G.; Montelione, G. T. J. Biomol. NMR

2004, 28, 341.
(102) Güntert, P.; Mumenthaler, C.; Wüthrich, K. J. Mol. Biol. 1997,
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