
1 with LMI FORTHTM 1

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System ' Call or write for detailed product information

and prices. Consulting and Educational Services
available by special arrangement.

* ~ a b o r a t o r ~ Microsystems Incorporated
Post Of f~ce Box 10430, Marlna del Rey, CA 90295

credit card orders to: (213) 306.7412

Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch, Titisee-Neustadt. 7651.1665
UK: System Science Ltd.. London, 01-248 0962
France. Mlcro-Sigma S A R.L., Paris. (1) 42.65.95.16
Japan: Southern Pacific Ltd.. Yokohama, 045-314.9514 , Australia: Wave-onic Associates. Wilson, W A,, (09) 451-2946

Conveniently, both the base of the
mask and its binary representation are
displayed. (Remember, the sixteen bits
are numbered zero through fifteen.)

The word SLA in MASK is my
system's ML shift-left arithmetic word
(nl cnt -- n2). Replace it with your
appropriate instruction. The 1 OR in
MASK takes care of the zero bit
position, as in 0 BIT-MASK.

Forth Dimensions and its contribu-
tors often supply me with either some
finishing touches or an idea to expand
on. Thanks!

Sincerely,

Gene Thomas
Little Rock, Arkansas

Student Roots

Dear Editor,

During this Summer Quarter of
1986, I have been providing the cour-
sework for a student taking "Forth
Programming" at Auburn University
at Montgomery. As one of his assign-
ments, this student (Hunter Moseley)
was required to write a square root in
Forth (F83) based upon a Newton's
method-type algorithm. However,
Hunter went beyond my thought and
wrote code that put mine to shame. My
code is shown in Figure One.

The D*I used does the same thing as
* I but with double-precision numbers.
In other words, (dl d2 63 -- d4). Also,
the 2NIP is a double-precision NIP. I
hated to use the double-precision
words, but for the accuracy needed,
they were necessary.

Hunter's code was simply that
shown in Figure Two.

In a time test on a Zenith-151 with
10,000 iterations, dropping the result
each time, Hunter's code guaranteed
119 seconds with any input from zero
to 32,766. Mine, however, with an
equivalent range of inputs, does the
square root of one in seventy-five
seconds, the square root of two in 280
seconds, and gets even worse after
that.

As can be seen, the two approaches
are based on the same idea, but
Hunter's does no bound checking. His

FORTH Dimensions 8

T
Davies' Square Roots
: SQRT (d l 6 2 -- d 3)

RECURSIVE
ZOVER ZOVER ZOVER 10000 0 ZROT D+/ ZSWAP
ZOVER 10000 0 ZSWAP D+/ ZOVER D- DABS
5 0 D< I F Z N I P Z N I P E X I T

ELSE D+ D Z /
THEN

SQRT I

: S Q R (n l - - nZ
10000 +D 10000 0 SQRT 10000 UM/MOD N I P ;

Figure One

: SQR (n l -- n 2)

1 1 0 0 DO ZDUP / + 2/ LOOP N I P ;

Figure Two

CODE SQR (n l -- n 2)
DX POP S I PUSH DX S I MOV 1 W EX MOV
10 DO

DX DX XOR S I AX MOV EX D I V AX EX ADD EX SAR
LOOP

S f POP EX PUSH NEXT END-CODE

Figure Three

: D S Q R (d l - - d 2)

1 . 19 0 DO ZOVER ZOVER D / D+ D 2 /
LOOP 2SWAP ZDROP I

Figure Four

simpler application of the algorithm is
much slicker - beauty in Forth.

Additionally, as an experiment with
F83's assembler, I translated Hunter's
algorithm into assembly. The code is
listed in Figure Three. A time test on
the Zenith-151 with 10,000 iterations,
dropping the result each time, guaran-
teed five seconds! Yes, that's right -
2,000 iterations per second! Perhaps
this amazes no one else, but 1 was
somewhat shocked.

For those interested, Hunter also has
the signed, double-precision version of
the square root. The code is in Figure

Four. The Dl is a double-precision
divide. If anyone is interested in the
code for these operators and their
double-precision primitives, I will glad-
ly share them.

In any case, I present these attempts
as examples of how traditional mathe-
matical thought sometimes must give
way to the more efficient patterns used
by our friends - the computers - and
Forth.
Sincerely yours,

R.L. Davies
Montgomery, Alabama

Second Take:
Multiple LEAVES by Relay

Dear Mr. Ouverson:

Please discard my previous letter to
you (Forth Dimensions VIII/3), as it
was completely erroneous. My intend-
ed verification test wound up with
confusion between the fig-FORTH
words in my system and the new
words, due to my carelessness! Here is
the new manuscript:

John Hayes' "Another Forth-83
LEAVE" (VII/l) stimulated me to try
to find an even simpler way to handle
multiple Forth-83 LEAVES. I decided
that a straight-forward approach invol-
ved having each LEAVE simply branch
to the next LEAVE, with the last one
removing the index values from the
return stack and branching to the word
following LOOP.

I "grafted" such a construction onto
fig-FORTH with the definitions below;
words with a prefix are used to
identify changes from fig-FORTH.
Unstarred words such as (DO) and
(LOOP) are unchanged. Whenever a
'LEAVE is compiled, the variable PLACE
is used to hold the location of its
branch value for later adjustment. This
variable also serves as a flag to show
that there is a leave branch to be
resolved. 'LOOP calls a >RESOLVE to
install the jump value of the preceding
(if any) 'LEAVE; also, if there is a
'LEAVE in the word, a special
OUTLEAVE is compiled immediately fol-
lowing the (LOOP) closure. OUTLEAVE
removes the (two) loop parameters
from the return stack and proceeds to
the next word, i.e., the word that was
entered after 'LOOP. If the 'LEAVE
command is not invoked at run time,
the normal loop operation removes
these parameters from the return stack,
so OUTLEAVE must be skipped over.
'LOOP compiles this bypass with a
BRANCH 4 which is encountered in nor-
mal loop completion. Alternatively,
(LOOP) could be modified to use
OUTLEAVE in normal loop completion.

Note that OUTLEAVE can be a
primitive which removes two words
from the return stack by using PLA four
times. If OUTLEAVE is defined as a

volume VIII. NO. 4 9 FORTH Dimenstons

