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What is Error Analysis?
• Error analysis is the detection, identification, and 

quantification of different types of uncertainty 
present in measurements and the propagation of 
this uncertainty through mathematical calculations 
and procedures.
o This definition associates the term error more with precision and less with 

mistake (inaccuracy).

• Error (Uncertainty) Analysis has several uses: 
i. Quality control of experiments. 
ii. Selection of appropriate statistical methods for data analysis.
iii. Determination of uncertainty in results. 

Uncertainty

But “Error Analysis” is the accepted term across multiple fields and disciplines.



Why is Error Analysis So 
Important for Metabolomics

• Error analysis plays a fundamental role in describing the 
amount of confidence in results.
o Especially as the number and heterogeneity of measurements increases.

• Metabolomics experiments have a lot of measurements.
• Metabolomics has more molecular heterogeneity than 

other omics technologies. 
o Genomics - 1 type of molecular entity, DNA.
o Transcriptomics - 1 type of molecular entity, RNA.
o Proteomics - 1 type of molecular entity, protein.
o Metabolomics - thousands of types of molecular entities.



Basic Statistical Terminology
• Mean:

o Estimate of the expected value.

• Variance:
o Spread of repeated measured values around the mean.

• Standard Error:
o Probabilistic description of how close the mean is to the expected value.

• Confidence Interval: 
o Identifies a range which includes the expected value at some level of 

confidence (typically 95% or 99%).

• Covariance:
o Describes how two measured variables vary together.

• (Pearson’s) Correlation:
o Describes the dependence between two measured variables.
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Variances

• Biological variance arises from the spread of 
measured values observed from multiple biological 
samples.  

• Analytical variance arises from the spread of 
measured values observed from multiple 
measurements made from the same biological 
sample. 

Biological Variance Analytical Variancevs



Variances and Errors

• Systematic error is experimental uncertainty not revealed by 
repeated measurements. 
o Does not appreciably affect variance.
o Can affect covariances and correlations between measured variables.
o Typically only revealed and corrected by separate tests/experiments.  

• Nonsystematic error (AKA error variance) is the experimental 
uncertainty revealed by repeated measurements.
o Can be reliably estimated by statistical methods.  

• Systematic variance represents the variance between groups 
of related samples in the sample set.  
o Specific systematic variances can be the desired signal to detect or part of the 

uncertainty in the measurements due to confounding factors.  
o In other words, one scientist’s uncertainty is another scientist’s usable systematic 

variance. 

Biological Variance Analytical Variance



Variances, Errors, and Biases

• Bias refers to any factor that distorts the design, 
execution, analysis, and interpretation of a 
measurement.
o A systematic error that distorts the measured values but does not change 

the variance.
o A systematic variance arising from a confounding factor that is either 

unknown or inadequately addressed.
o An inadequate or improper statistical method of analysis.

Biological Variance Analytical Variance



Types of Biases
Biological Variance Analytical Variance

Biological Biases Analytical Biases

Interpretive Biases and Errors

• Assignment Error
• Metabolite Assignment Error
• Class (Group) Assignment Error

• Confirmation Bias
Why is assessment 
of assignment error 
so problematic in 
metabolomics?



Dealing with Biases
I. Use reasonably consistent experimental designs that 

exclude:
o Partial consistencies for specific groups of samples, which may lead to a 

systematic variance from biological or analytical biases.
o Trivial consistencies that may limit the generalization of results, due to 

systematic errors from biological or analytical biases.  

II. Use effective experimental designs.
o Matched-pair case-control experiments limit the effects of confounding 

factors, especially from biological biases.  
o Balanced case-control groups with respect to possible confounding factors 

(sex, age, related biological condition) prevents systematic error.  
o Equally balanced confounding factors (blocking) allow the use of more 

sophisticated statistical methods .
• ANOVA instead of t-test or Welch ANOVA instead of Welch’s t test.  

III. Directly test how well a set of measured values for a 
given measured variable fits an expected/assumed 
analytical nonsystematic error distribution. 
o The Shapiro-Wilk and the Anderson-Darling tests are two of the best tests for 

normality (normal distribution). 



Dealing with Biases
IV. Validate results with temporally-separated datasets to detect the 

presence of biases.  
o However, passing this analytical cross-validation does not guarantee a bias-free approach.  

V. Use blinded metabolomics experiments to reduce bias.  
o The double-blind randomized control trial is considered the gold standard. 

• Reduces researcher-introduced performance bias.
• Does have known masking biases due to the psychological effects of the trial itself. 

o Even the blinding of analytical and/or statistical researchers can reduce performance biases.  
VI. Use analytical controls to prevent or correct for analytical biases.

o Use periodic controls or time-stamped near-random controls to track analytical conditions.
• Use Latin square or 2D near-random patterns on plates. 

o Use blind controls to detect and correct performance and other analytical biases.  
o Use a series of controls composed of complex mixtures of representative or chemically similar 

metabolites to determine systematic error arising from sample extraction methods and mixture 
interaction effects.

VII. Fully document the experiment and results. 
o Document: 

• The biological and analytical experimental procedures. 
• The statistical procedures used in the analysis of the dataset.
• A detailed list of all known or potential biases and assumptions, along with results of any analysis 

and testing of these bias and assumptions.
• Adequate measures of uncertainty and confidence or at least a good explanation for why 

uncertainty and confidence measures are not provided.  
o Enables thorough peer-review and facilitates future meta-analyses.  
o Minimum reporting standards for (plant specific) metabolomics experiments exist.

• No metabolomics standards for reporting known and potential sources of bias.
• Can borrow from well-documented clinical standards like STARD and CONSORT.



Major Steps of Standard 
Error Analysis

1. Error estimation and probability distribution testing.
o Involves:

• Testing of common distributions like normal, Poisson, binomial, and Lorenztian.
o 8 to 10 replicates are considered the minimum needed with the Shapiro-Wilks test (normality test).
o 20 to 30 replicates are typically desired for significant power.

• Calculation, estimation, modeling, and comparison of nonsystematic error, variance, and covariance arising from 
biological and analytical sources.  
o 13 replicates (12 + 1) are considered the minimum for calculating variances with ~half-width confidence 

intervals and at least the 90% confidence level when approximately normally distributed.
o 30 replicates are required to calculate variances with ~half-width confidence intervals at the 99% 

confidence level. 
o One central question: “Will analytical nonsystematic error, variances, and covariances prevent the detection and 

interpretation of biological systematic variance in a given metabolomics dataset?” 
• Determine any analytical nonsystematic error, variance and covariance that could interfere with biological 

interpretation.  
o These issues really need to be part of the experimental design.  

• How many replicates are needed at each stage of the experimental protocol in order to have the necessary 
dataset for thorough error analysis.

• Address issues of statistical power for the expected statistical methods.
o Probability that a statistical test will properly reject the null hypothesis and not make a false negative 

decision (Type II error). 
o Minimum expected statistical power ≥ 0.8 at α=0.05 (significance level) with “reasonable” statistical 

assumptions.
• Test “reasonable” assumptions by increasing analytical replicates for a subset of the samples.  
• Address failed assumptions and lack of statistical power: 

i. Increase analytical replicates to deal with analytical nonsystematic error.
ii. Correct for factors that (may) cause analytical systematic variance.
iii. Switch to statistical methods that can handle the failed assumption(s).

• Nonparametric Wilcoxon-Mann-Whitney test is preferred to a t-test when the data is significantly 
non-normal. 

• Neither test works well if the data is highly skewed.
iv. Incorporate estimates of analytical variance and covariance into more sophisticated statistical methods.



Major Steps of Standard 
Error Analysis

2. Error (uncertainty) propagation analysis.
A. Mathematical (analytical) derivation and approximation.

• With few exceptions, almost all analyses of error propagation via 
mathematical derivation and approximation are performed from a 
linear perspective. 

• This linear assumption is used, whether the functions and algorithms 
being analyzed are linear or nonlinear.

B. Numerical analysis.  
• Often more accurate than mathematical approximation, especially for 

nonlinear functions.
• Very computationally expensive in many instances.
• Typically requires writing programs to perform the analysis where some 

form of the Monte Carlo method is usually employed.
o The Monte Carlo method is simply sampling a given function or 

algorithm via the use of random input values.



Linear Assumption in Error 
Propagation
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Linear Assumption in 
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Linear Assumption in 
Error Propagation

𝜎𝜎𝑦𝑦2 ≈ �
𝜕𝜕𝜕𝜕 𝑥̅𝑥1, … , 𝑥̅𝑥𝑛𝑛

𝜕𝜕𝑥𝑥𝑖𝑖

2

𝜎𝜎𝑥𝑥𝑖𝑖
2

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠

+ ��
𝑗𝑗≠𝑖𝑖

𝜕𝜕𝜕𝜕 𝑥̅𝑥1, … , 𝑥̅𝑥𝑛𝑛
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕 𝑥̅𝑥1, … , 𝑥̅𝑥𝑛𝑛
𝜕𝜕𝑥𝑥𝑗𝑗

𝑟𝑟𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 𝜎𝜎𝑥𝑥𝑖𝑖
2 𝜎𝜎𝑥𝑥𝑗𝑗

2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠

𝜎𝜎𝑦𝑦2≈ j(�x)TCx j(�x)

Cy ≈ 𝐉𝐉𝐹𝐹(�𝐱𝐱)Cx 𝐉𝐉𝐹𝐹(�𝐱𝐱)T

covariance matrix for x

vector of 1st order 
partial derivatives at �x

Jacobian matrix at �xcovariance matrix for y



Error Analysis and 
Propagation in 

Metabolomics Data 
Analysis

Part II



Numerical Error 
Propagation Analysis

• The Monte Carlo Method
o A large collection of methods with a wide variety of applications involving the 

sampling of a given function or algorithm via the use of random input values.
• A simple Monte Carlo Method for error propagation 

analysis:

xi - pseudo-random input vectors of values.
X – the set of pseudo-random input vectors of values used in the sampling.
Xj ~ Dj – the probability distribution Dj for input variable Xj in the vector.

o The sampling of f produces a set of vectors yi ϵ Y, that can be 
directly analyzed in an analogous manner as experimental 
data:

• Probability distribution testing.
• For common probability distributions, the calculation of:

o Expected values.
o Variances
o Standard errors.
o Correlations.

y𝑖𝑖 = 𝑓𝑓 𝐱𝐱𝑖𝑖 where 𝐱𝐱𝑖𝑖 ∈ 𝑋𝑋 and 𝑋𝑋𝑗𝑗 ~𝐷𝐷𝑗𝑗

Why is error propagation 
analysis via a Monte Carlo 
method so popular?



Methods to Generate 
Pseudo-Random Values

• Built-in R functions:
o rnorm – generates normally distributed random numbers.
o rlnorm – generates log normally distributed random numbers.
o rbinom – generates binomially distributed random numbers.
o rpois – generates Poisson distributed random numbers.

• Several straight-forward algorithms available:
o Typically use uniformly distributed pseudo-random numbers U[0,1]. 
o Different algorithms for the common probability distributions. 

• By definition, the inverse of a cumulative distribution function can be used to 
calculated pseudo-random values from U[0,1] distributed values.

o Example – Box Muller method.
• Popular, because it is easy to implement.
• Uses a pair of U[0,1] values to generate a pair of normally distributed values.

• Even complex or unknown distributions can be estimated.
o Use a two-sample Kolmogorov–Smirnov test.
o Sets of pseudo-random values are generated based on bootstrap-derived statistical 

parameters and tested against an experimentally derived set of measured values using the 
two-sample K-S test.

• Correlation can be introduced by several methods. 
Knuth DE (2006) The art of computer programming: Addison-Wesley.
Massey Jr FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46: 68-78.
Vale CD, Maurelli VA (1983) Simulating multivariate nonnormal distributions. Psychometrika 48: 465-471.
Headrick TC, Sawilowsky SS (1999) Simulating correlated multivariate nonnormal distributions: Extending the Fleishman power method. 
Psychometrika 64: 25-35.



Properties of Y

• If f is linear and X variables are (reasonably) 
independent and identically distributed (Xi ~ Xj) with 
finite variance:
o yi ϵ Y often reflects the distribution of X (Yi ~ Xj) 
o Certain Yi may even approximate a normal distribution when Yi depend 

on many Xj variables (i.e. Central Limit Theorem).  

• If f is nonlinear:
o Drastically non-normal distributions are common for Y and quite distinct 

from X, even if X is normally distributed.  
o Nonlinearity is very common for metabolic models with exchange and 

bidirectional fluxes.
• Sometimes metabolomic models can be solved (reasonably 

approximated) by a linearization. 

y𝑖𝑖 = 𝑓𝑓 𝐱𝐱𝑖𝑖 where 𝐱𝐱𝑖𝑖 ∈ 𝑋𝑋 and 𝑋𝑋𝑗𝑗 ~𝐷𝐷𝑗𝑗

What is often the salvation of statistical analysis?



Dealing with NonnormalYi
• A median with a confidence interval is preferable to 

a mean with a standard error.
o Simply order the sampling for each Yi and takes the interval:

(y(n+1)(1-c), y(n+1)c) 
where c is the level of confidence as a fraction (i.e. 0.95).

o Requires sample sizes of 1000 or 10000, depending on the desired level of 
confidence in these confidence intervals.

• A Spearman’s rank correlation coefficient can be 
used to calculate correlation in a nonparametric 
way.

Buckland ST (1984) Monte Carlo confidence intervals. Biometrics 40: 811-817.
Spearman C (1904) The proof and measurement of association between two things. The American Journal of Psychology 15: 72-101.

http://en.wikipedia.org/wiki/File:Spearman_fig3.svghttp://en.wikipedia.org/wiki/File:Spearman_fig1.svg

Monotonic 
related variables 
have a p = 1

where xi and yi are ranks.

Simplified (no duplicate values)

where di = (xi – yi). 



Inverse Problems in 
Metabolomics

• Often a model of relevant chemical reactions for a 
“known” cellular metabolic network is more easily 
constructed and used to calculate specific 
metabolite fluxes and pools (mass-related 
characteristics) that can be compared to 
experimental values, especially in a time series. 

• Sometimes “model” refers to:
o Framework of equations (g).
o g and fixed input parameters (yi,j = cj)
o g and optimized parameters (yopt). 

x𝑖𝑖 = 𝑔𝑔 𝐲𝐲𝑖𝑖 where 𝑔𝑔 ≈ 𝑓𝑓−1



Major Metabolic Modeling 
Methodologies

• Metabolic Flux Analysis (MFA) 
o Determines a set of cellular metabolic fluxes from experimental data.
o Uses a system of differential equations derived from a balanced stoichiometric 

matrix at steady-state conditions.
• Flux Balance Analysis (FBA)

o Determines sets of steady-state metabolic fluxes that optimize a stated cellular 
objective like maximizing biomass production.

o Uses a linearized representation of fluxes derived from a stoichiometric matrix 
assuming steady-state conditions.

• Flux Ratio Analysis
o Determines flux ratios (relative flux) of converging pathways from experimental 

data.
o Uses a system of differential equations.

• Metabolic Control Analysis
o Determines control coefficients for specific components like enzymes in a 

metabolic network.
o Based on how changes in enzyme concentrations affect flux through parts of 

the metabolic network.



Optimization of 
Inverse Problems

• An objective function compares the results from the 
model xi = g(yi) with experimental data xexp through 
some norm function.
o AKA target function or energy function depending on context.

• Os – simple objective function using an 𝓵𝓵2-norm. 

• The objective function is minimized while model 
parameters are optimized to yopt using an 
optimization method of choice.
o Often some type of Monte Carlo method by definition (cf. simulated 

annealing).

𝑂𝑂𝑠𝑠(𝐲𝐲𝑖𝑖) = 𝑔𝑔 𝐲𝐲𝑖𝑖 − 𝐱𝐱𝑒𝑒𝑒𝑒𝑒𝑒
2 = 𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑒𝑒𝑒𝑒𝑒𝑒

2 = �
𝑗𝑗

𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗
2



Problems with 
Inverse Problems

• Almost all metabolomics inverse problems are ill-posed 
and ill-conditioned due to:
o Model complexity.
o Model non-linearity.
o Limitations in the number and variety of measurements. 

• Can prior knowledge overcome limitations in the data without introducing 
undue bias? 

• These issues may:
o Preclude a unique solution yopt to a given set of experimental measurements 

xexp (i.e. ill-posed).
o Allow the existence of multiple solutions yopt,I (i.e. ill-posed).
o May cause discontinuities.
o May cause high conditioning (i.e. large variation) in model parameters with 

respect to small changes in experimental measurements.  
• Leads to overfitting of model parameters (yopt).
• Amplifies uncertainty in model parameters.

Regularization – use of additional information to prevent overfitting
of an ill-conditioned problem or allow a unique solution to an ill-
posed problem.



Tikhonov Regularization

• Issues using Tikhnov regularization:
o 𝜶𝜶 – large enough to prevent overfitting, but small enough to prevent bias.
o p – must properly weight between ||xi|| and ||yi||. 
o 𝒚𝒚𝑬𝑬 – a “reasonable” expectation, “close enough” to 𝒚𝒚 exact.  

• If 𝜶𝜶 and p are picked properly, a confidence region 
around 𝒚𝒚𝑬𝑬 that includes 𝒚𝒚 exact can be estimated with 
respect to 𝒚𝒚𝒊𝒊 − 𝒚𝒚𝑬𝑬 𝒑𝒑

𝟐𝟐 based on a Fisher distribution.

𝑂𝑂𝑇𝑇(𝐲𝐲𝑖𝑖) = 𝑔𝑔 𝐲𝐲𝑖𝑖 − 𝐱𝐱𝑒𝑒𝑒𝑒𝑒𝑒
2 + 𝛼𝛼𝛼𝛼 𝐲𝐲𝑖𝑖 ,𝐲𝐲𝐸𝐸

= 𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑒𝑒𝑒𝑒𝑒𝑒
2 + 𝛼𝛼 𝐲𝐲𝑖𝑖 − 𝐲𝐲𝐸𝐸 𝑝𝑝

2

= �
𝑗𝑗

𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗
2 + 𝛼𝛼 �

𝑘𝑘

𝑦𝑦𝑖𝑖,𝑘𝑘 − 𝑦𝑦𝐸𝐸,𝑘𝑘
𝑝𝑝

2
𝑝𝑝

weighting factor expected model 
parameters

p-norm

Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems: Springer.



Error-bounded Generalized 
Least Squares Approach

Where:
o Cx – analytical covariance matrix for xexp.
o 𝜹𝜹𝒙𝒙 – error threshold. 
o 𝝌𝝌𝒏𝒏−𝒎𝒎𝟐𝟐 𝟏𝟏 − 𝜷𝜷 – 𝝌𝝌𝟐𝟐 statistic with n-m degrees of 

freedom and a p-value of 1-β.
• n - # of measured experimental variables.
• m - # of model parameters.
• β - desired level of confidence.

o yopt - determined by the lowest Og(yi).

𝑂𝑂𝑔𝑔(𝐲𝐲𝑖𝑖) = 𝑔𝑔 𝐲𝐲𝑖𝑖 − 𝐱𝐱𝑒𝑒𝑒𝑒𝑒𝑒
TCx

−1 𝑔𝑔 𝐲𝐲𝑖𝑖 − 𝐱𝐱𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝛿𝛿𝐱𝐱

𝐶𝐶𝐶𝐶1−𝛽𝛽 𝐲𝐲𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝐲𝐲𝑖𝑖 𝑂𝑂𝑔𝑔 𝐲𝐲𝑖𝑖 ≤ 𝛿𝛿𝐱𝐱 ≈ 𝑂𝑂𝑔𝑔 𝐲𝐲𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜒𝜒𝑛𝑛−𝑚𝑚2 1 − 𝛽𝛽

𝐶𝐶𝐶𝐶𝑦𝑦𝑗𝑗,1−𝛽𝛽 𝐲𝐲𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝑦𝑦𝑗𝑗𝑗 min𝑂𝑂𝑔𝑔 𝐲𝐲𝑖𝑖 |𝑦𝑦𝑗𝑗=𝑦𝑦𝑗𝑗𝑗 ≤ 𝛿𝛿𝐱𝐱 ≈ 𝑂𝑂𝑔𝑔 𝐲𝐲𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜒𝜒12 1 − 𝛽𝛽

Engl HW, Flamm C, Kügler P, Lu J, Müller S, et al. (2009) Inverse problems in systems biology. Inverse Problems 25: 123014.
Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from 
stable isotope measurements. Metabolic Engineering 8: 324-337.

• This approach works if:
o All measured variables are 

(approximately) normally distributed.
o Analytical covariance matrix Cx is 

known or well-estimated.
• Caveats:

o The residuals normalized by Cx
-½ should 

be tested for normality.
o The optimization needs a large number 

of repetitions.
• May be improved by the use of 

Jacobian and Hessian matrices .



The Grand Assumption:
g is “reasonably” accurate
• Potential for a very large (gargantuan) interpretive 

bias.
• The faith in certain metabolic models is quite 

troubling, given:
o The lack of verified details.
o Errors in metabolic databases used in the construction of models.

• Especially construction of models based on eukaryotic metabolic 
networks.

o Often more parameters than measured variables.



Improving Model 
Verification

I. Pare down a metabolic model to what is relevant to the 
observables.
a) Gross model paring.

• Limits the model to relevant pathways and modules of a metabolic network .
b) Specific variable pairing by independence.

• Limits the model parameters to the smallest set of independent or “free” model parameters 
from which other intermediate model parameters are derived.

c) Specific variable paring by sensitivity.
• Removes and/or simplifies parts of a model that include insensitive model parameters with 

respect to measured experimental variables.
II. Design experiments where there are enough observables to 

perform model selection (n >> m).
o Stable Isotope Resolved Metabolomics (SIRM).

• Use of multiple stable isotopes.
• Use of multiple source metabolites. 
• Measurements collected in a time series.

III. Use more rigorous model verification and selection methods.
o Reject models where Og(yopt) > 𝝌𝝌𝒏𝒏−𝒎𝒎𝟐𝟐 𝟏𝟏 − 𝜷𝜷 .

• Analytical error can be adequately determined/estimated.
• Measured variables are approximately normally distributed.

o Select between plausible models using standard methods.
• Akaike Information Criterion (AIC).

Fan TW-M, Lane AN, Higashi RM (2004) The Promise of Metabolomics in Cancer Molecular Therapeutics. Current Opinion in Molecular Therapeutics 6: 584-592.
Fan TWM, Lorkiewicz P, Sellers K, Moseley HNB, Higashi RM, et al. (2012) Stable isotope-resolved metabolomics and applications for drug development. Pharmacology & 
Therapeutics 133: 366.
Moseley HNB, Lane A, Belshoff A, Higashi R, Fan T (2011) A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 
13C mass isotopologue profiles under non-steady-state conditions. BMC Biology 9: 37.



13C Tracing in UDP-Hexose Biosynthesis
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R
A
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UDP-Glc|GalNAc FT-ICR-MS Data

m/z
606.0751 
607.0779 
608.0817
609.0844 
610.0885 
611.0919 
612.0953 
613.0990 
614.1020 
615.1054 
616.1087 
617.1125 
618.1160 
619.1191 
620.1226 
621.1260 
622.1289 
623.1295

i
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Norm. Intensity
0.0050033
0.00094257
0.00099737
0.00065213
0.0037484
0.041111
0.029762
0.036908
0.046745
0.017722
0.033593
0.11357
0.099003
0.29721
0.12134
0.10877
0.043753
0.00056993

13C2
12C15

1H25
16O17

31P2

INorm,i = Ii
ΣIx

12C monoisotopic peak

U

R
A

G

Corrected Intensity
0.0060476 
0 
0.0010778 
0.00057741 
0.0042294 
0.046380 
0.027433 
0.037537 
0.047317 
0.014439 
0.034823 
0.11867 
0.096692 
0.30518 
0.11181 
0.10728 
0.041821 
0.000092779 ≈ 0

Each isotopologue
represents a set of 
mass-equivalent 
positional 
isotopomers.

g0r0a2u0 + g0r0a0u2

Normalization is an 
excellent internal 
reference. 



Moiety Model of Isotopologue Intensities

Direct

Solving these parameter values will estimate the 
contribution of these metabolic pathways to 13C 
incorporation in UDP-GlcNAc biosynthesis.

Glycolysis

Glycolysis & CAC

PPP

• Glucose:             g0 + g6 = 1   ~ 1 parameter
• Ribose:                 r0 + r5 = 1   ~ 1 parameter
• Acetyl:                 a0 + a2 = 1   ~ 1 parameter
• Uracil: u0 + u1 + u2 + u3 = 1   ~ 3 parameters

6 parameters

= g0r0a0u0
= g0r0a0u1
= g0r0a0u2 + g0r0a2u0
= g0r0a0u3 + g0r0a2u1
= g0r0a2u2
= g0r5a0u0  + g0r0a2u3
= g6r0a0u0 + g0r5a0u1
= g6r0a0u1 + g0r5a2u0 + g0r5a0u2
= g6r0a2u0 + g6r0a0u2 + g0r5a0u3 + g0r5a2u1
= g6r0a0u3 + g6r0a2u1 + g0r5a2u2
= g6r0a2u2 + g0r5a2u3
= g6r5a0u0 + g6r0a2u3
= g6r5a0u1
= g6r5a0u2 + g6r5a2u0
= g6r5a0u3 + g6r5a2u1
= g6r5a2u2
= g6r5a2u3
= NA contribution only.

Moseley et al., Proceedings of BIOINFORMATICS 2011, 108-115 (2011)
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Extensive Comparison of Models
AIC = -157.43 6_G0R2A1U3_g3r2r3_g6r5 
AIC = -109.64 6_G1R1A1U3_a1 
AIC = -136.29 6_G1R1A1U3_g5 
AIC = -154.32 6_G1R1A1U3
AIC = -137.17 6_G1R1A1U3_r4 
AIC = -133.12 6_G1R1A1U3_u4 
AIC = -159.00 7_G0R2A2U3_g3r2r3_g6r5 
AIC = -72.52   7_G0R3A1U3_g3r2r3_g6r5_g5r4 
AIC = -72.52   7_G0R3A1U3_g3r2r3_g6r5_r4 
AIC = -151.40 7_G1R1A1U3C1 
AIC = -153.52 7_G1R1A1U4 
AIC = -156.29 7_G1R1A2U3 
AIC = -158.25 7_G1R2A1U3_g3r2r3 
AIC = -153.65 7_G1R2A1U3_r1 
AIC = -159.24 7_G1R2A1U3_r2 
AIC = -147.55 7_G1R2A1U3_r3 
AIC = -163.39 7_G1R2A1U3_r4 
AIC = -153.95 7_G2R1A1U3_g1 
AIC = -153.64 7_G2R1A1U3_g2 
AIC = -158.87 7_G2R1A1U3_g3 
AIC = -151.21 7_G2R1A1U3_g4 
AIC = -160.84 7_G2R1A1U3_g5 
AIC = -154.17 8_G1R1A2U3C1 

AIC = -156.58 8_G1R2A2U3_g3r2r3_g6r5_g5 
AIC = -158.22 8_G1R2A2U3_g3r2r3 
AIC = -154.14 8_G1R2A2U3_r1 
AIC = -159.10 8_G1R2A2U3_r2 
AIC = -157.39 8_G1R2A2U3_r2r3 
AIC = -148.47 8_G1R2A2U3_r3 
AIC = -161.97 8_G1R2A2U3_r4 
AIC = -153.91 8_G2R1A2U3_g1 
AIC = -154.09 8_G2R1A2U3_g2 
AIC = -158.85 8_G2R1A2U3_g3 
AIC = -151.36 8_G2R1A2U3_g4 
AIC = -159.52 8_G2R1A2U3_g5 
AIC = -155.89 9_G2R2A2U3_r2r3_g1 
AIC = -154.77 9_G2R2A2U3_r2r3_g2 
AIC = -156.24 9_G2R2A2U3_r2r3_g3 
AIC = -152.79 9_G2R2A2U3_r2r3_g4 
AIC = -156.13 9_G2R2A2U3_r2r3_g5 
AIC = -155.50 9_G2R2A2U3_r2r3_g6r5_g3_g5 

A Problem with OverFitting!

# of model
parameters

Log of model 
likelihood



Using MultipleTime Points to 
Handle Overfitting

AIC = -321.81 6_G0R2A1U3_g3r2r3_g6r5 
AIC = -355.87 6_G1R1A1U3_a1 
AIC = -326.98 6_G1R1A1U3_g5 
AIC = -428.98 6_G1R1A1U3 
AIC = -332.69 6_G1R1A1U3_r4 
AIC = -308.16 6_G1R1A1U3_u4 
AIC = -291.31 7_G0R2A2U3_g3r2r3_g6r5 
AIC = -287.32 7_G0R3A1U3_g3r2r3_g6r5_g5r4 
AIC = -290.16 7_G0R3A1U3_g3r2r3_g6r5_r4 
AIC = -306.58 7_G1R1A1U3C1 
AIC = -293.12 7_G1R1A1U4 
AIC = -299.86 7_G1R1A2U3 
AIC = -294.52 7_G1R2A1U3_g3r2r3 
AIC = -308.59 7_G1R2A1U3_r1 
AIC = -288.94 7_G1R2A1U3_r2 
AIC = -277.44 7_G1R2A1U3_r3 
AIC = -244.47 7_G1R2A1U3_r4 
AIC = -318.01 7_G2R1A1U3_g1 
AIC = -317.89 7_G2R1A1U3_g2 
AIC = -286.93 7_G2R1A1U3_g3 
AIC = -277.12 7_G2R1A1U3_g4 

AIC = -252.21 7_G2R1A1U3_g5 
AIC = -288.84 8_G1R1A2U3C1 
AIC = -296.01 8_G1R2A2U3_g3r2r3_g6r5_g5 
AIC = -288.88 8_G1R2A2U3_g3r2r3 
AIC = -290.93 8_G1R2A2U3_r1 
AIC = -296.67 8_G1R2A2U3_r2 
AIC = -296.18 8_G1R2A2U3_r2r3 
AIC = -251.87 8_G1R2A2U3_r3 
AIC = -239.25 8_G1R2A2U3_r4 
AIC = -303.97 8_G2R1A2U3_g1 
AIC = -293.45 8_G2R1A2U3_g2 
AIC = -288.32 8_G2R1A2U3_g3 
AIC = -260.59 8_G2R1A2U3_g4 
AIC = -236.42 8_G2R1A2U3_g5 
AIC = -293.74 9_G2R2A2U3_r2r3_g1 
AIC = -279.33 9_G2R2A2U3_r2r3_g2 
AIC = -291.46 9_G2R2A2U3_r2r3_g3 
AIC = -241.63 9_G2R2A2U3_r2r3_g4 
AIC = -227.58 9_G2R2A2U3_r2r3_g5 
AIC = -276.84 9_G2R2A2U3_r2r3_g6r5_g3_g5

Moseley et al., Proceedings of BIOINFORMATICS 2011, 108-115 (2011)



Conclusions

• Determining the propagation of uncertainty in 
metabolomics data analysis is very hard.

• Most in the field are doing it wrong, because:
o They do not understand the math.
o They do not understand the analytical techniques.
o They do not understand the biological problem.
o They do not have the necessary datasets to determine the analytical 

variance.

• There are two ways to handle the problem:
o Collect the necessary datasets to derive analytical uncertainty.
o Take advantage of known correlations to estimate analytical uncertainty.
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